Lab-in-a-Box
The Lab-in-a-Box is an introductory electrical engineering project kit and accompanying textbook. It includes a breadboard called the A&D or "ANDY" board.
Contents
ANDY Board
The ANDY board has ±9V and +5V sources, clock signal, sine/square wave signal generator, 16 dipswitches, 16 LEDs, and two pushbutton switches. The dipswitches and LEDs are used for digital applications in Introduction to Computer Engineering. The signal generator is for RC circuits in the Electric Circuit Analysis Laboratory.
Parts Kit
The parts included with the kit include resistors, capacitors, inductors, light emitting diodes, and a handful of integrated circuits including operational amplifiers, and digital logic chips.
Software Oscilloscope on Linux
While xoscope or the Lab-in-a-Box attenuator circuit could use some tweaking to work out of the box together, xoscope can be readily modified to display scaled maximum, minimum and peak-to-peak values. The first step is to obtain the program source code. On a Debian-based systems like Ubuntu, just run sudo apt-get source xoscope
.
Once the source has been downloaded and unpacked, edit sc_linux.c
to use /dev/dsp1
rather than /dev/dsp
:
sed -ir 's%(#define SOUNDDEVICE "/dev/dsp)(")%\11\2%'
Next, modify the display code in display.c
to display a scaled value. Around line 186, change the code to read something like the snippet below. Use your multimeter to measure the the RMS voltage, calculate the peak-to-peak that should be displayed and tweak the divisor, re-compile and re-run until the value is correct.
else sprintf(string, " Max:%f - Min:%f = %f Pk-Pk ", (float)stats.max / 3.2, (float)stats.min / 3.2, ((float)stats.max - (float)stats.min) / 3.2 ); gtk_label_set_text(GTK_LABEL(LU("min_max_label")), string);
To compile the modified source, simply run make
. To run the newly compiled binary, run ./xoscope
. Refer to the xoscope article for instructions on using the scope.
External Links
- VT news story
- CEL listing of the lab kit