An Overview of the Classes and Uses of Distributed Filesystems

Calvin Winkowski

Linux and Unix Users Group at Virginia Tech

April 24, 2014

Origins

ITS

- MIT AI Lab Incompatible Timesharing System
- Virtual software devices
- Inter-machine FS access

Locus

- Atomic operations
- Transparent data location
- Replication
- Caching

AFS

Goals

- · Develop the future environment of computing
- Reduction in central timesharing devices
- Networking will be pivotal

Design

- File locking
- Location independent
- Hierarchy of file systems
- Storage independent of consumers

Modern World

Data

- Large data stores, very fast access
- High availability

Compute

- Variable requirements
- High speed & small storage vs Low speed & large storage

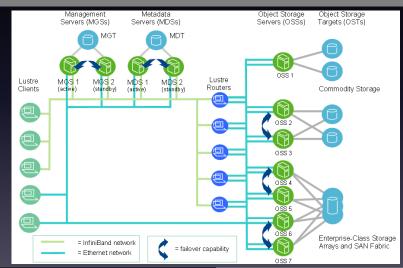
Gains of DFSs

Capability

- Speed (Write vs Read)
- Replication
- Locking
- De-duplication

Utility

- Unified Namespace
- Access Control
- Enumeration
- Failover vs Fault Tolerance
- Load Balancing

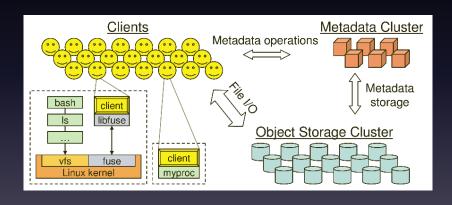

Classes of DFSs

- Centralized
- Decentralized
- Mapreduce
- Grid

Basics of Centralized DFSs

- Central Metadata server
- Distributed object storage
- Parallel Access is simplified
- Fast throughput, higher latency
- Loss of high-availability
- Favours big compute

Lustre


Examples of Centralized DFSs

- Lustre ← Note the spelling
- XtreemFS
- pNFS
- AFS

Basics of Decentralized DFSs

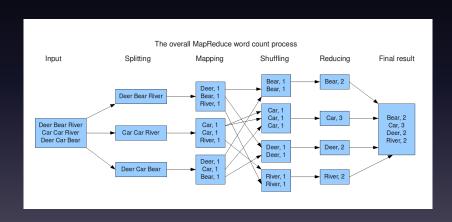
- All data is clustered
- Increases locking complexity
- HA friendly
- Loss of throughput
- May increase latency

CEPH

Examples of Decentralized DFSs

- CEPH
- GFS
- GlusterFS
- FhGFS
- Tahoe-LAFS

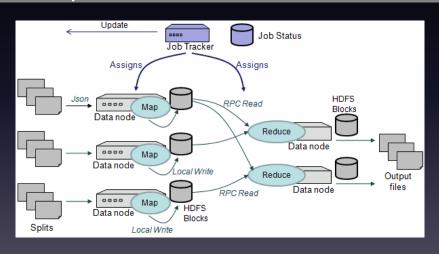
MapReduction


Мар

- Mathematical definition
- Organizing the data for consumption

Reduce

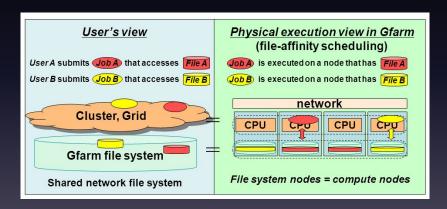
- Produce a series of values
- Generating results


MapReduction Example

Basics of MapReduce DFSs

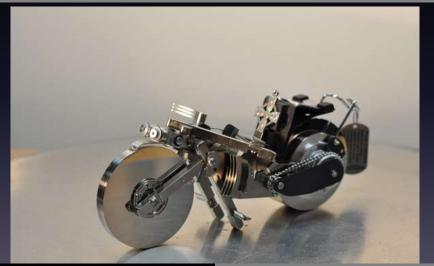
- Favours big data
- Some centralized entry point
- Master maps to storage servers
- Integrate with MapReduce frameworks
- Usually provides an API

Hadoop


Examples of MapReduce DFSs

- Hadoop
- GFS (Not to be confused with GFS, GFS2, GlusterFS, GPFS)
- GloudStore
- QFS

Grid File Systems


- Take advantage of many small nodes
- Often run on workstations
- "Crowd source" storage
- Gfarm File System
- Scalable I/O
- Grid computing

Gfarm

Centralized Decentralized MapReduce Grid

Questions

